
Relaxation phenomena in two interacting spin lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 4921

(http://iopscience.iop.org/0953-8984/2/22/013)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 11/05/2010 at 05:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/22
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter 2 (1990) 4921-4934. Printed in the UK 

Relaxation phenomena in two interacting spin lattices 

S Ciuchit, F de Pasqualei and P MonachesiQIl 
f Dipartimento di Fisica, Prima Universith degli Studi di Roma, La Sapienza, 
Piazzale A Moro, 2 ,  1-00185 Roma, Italy 
f Dipartimento di Fisica, Universith degli Studi dell’Aquila, 1-67100 L’Aquila, Italy 
5 Institut de Physiqye Thkorique, C‘niversitk de Lausanne, CH-1015 Lausanne. 
Switzerland 

Received 23 October 1989 

Abstract. We study the kinetics of the formation of antiferromagnetic order in a finite spin 
system. The system is initially forced to be an unstable ferromagnetic state by means of an 
external field. When the field is switched off the system decays toward equilibrium. The 
finite size of the system has relevant consequences on the time of persistence of the initial 
unstable state. The fluctuations driving the system to equilibrium become anomalously large 
in the transient. We obtain analytic results for the transient fluctuation statistics in the 
limit where the average squared magnetisation relaxes much more quickly than relative 
orientation of the sublattices. The results have been obtained in the framework of spherical 
model and of molecular field approximation. The relaxation dynamics are ruled by the non- 
linear Langevin equations. 

1. Introduction 

In this paper we address the phenomenon of the recovering of equilibrium long range 
order in a Neel lattice initially set in an unstable state. The choice of a NCel lattice with 
an infinite range interaction is equivalent, for the static properties, to the mean field 
approximation. The spins belonging to the same sublattice interact ferromagnetically 
whereas an antiferromagnetic interaction couples the two sublattices (Smart 1966). 
Below the Neel temperature the system exhibits antiferromagnetic order with opposite 
average magnetisations in the two sublattices. When an external magnetic field of 
sufficient strength is applied, the spins of the downward sublattice flip in the field 
direction, realising a ferromagnetic state whose thermodynamic properties may be 
derived by solving the mean field equations in the presence of the external field. As the 
field is switched off the ferromagnetic state becomes unstable and undergoes a relaxation 
towards the equilibrium Neel state. 

The aim of this paper is to study the dynamics of this decay process with particular 
regard to the effect of the finite size of the system on the onset of the relaxation process. 
Finite size effects have already turned out to be quite important in the growth of 
ferromagnetic order after a thermal quenching (Ciuchi et a1 1988). In particular it was 
found that fluctuations due to the finite size of the system, usually negligible in the 
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thermodynamic limit, are amplified to a macroscopic amplitude in the decay from an 
unstable state. However, whereas in a ferromagnet this phenomenon is completely 
obscured by the presence of an external field that is small but finite in the thermodynamic 
limit, in the present case it occurs for a finite magnitude range of the applied field. 

An analytic theory of the phenomenon is easily developed in the framework of the 
spherical model (Berlin and Kac 1952) which is equivalent to the weak constraint (Lyons 
and Kaplan 1960) used for the determination of the ground state spin configuration in 
the steady limit. In this context the site magnetisation-the natural variable to describe 
the time evolution of the system-is assumed to be a stochastic process obeying a 
generalised Langevin equation. We will assume Langevin dynamics rule both the steady 
state and the non-linear relaxation. To be more precise, we shall identify the time- 
dependent local magnetisation with a 2N-component scalar field defined on each lattice 
site. The time evolution of the local magnetisation, after switching off of the field, is due 
to the action of three effects: the coupling with the magnetisation at different sites, 
treated in the molecular field approximation; the random local thermal noise; and the 
presence of non-linear terms that force the system to relax according to the weak 
constraint. The main advantage of this model is the possibility of describing the system 
with 2N degrees of freedom in terms of a statistically equivalent one with only two 
degrees of freedom, namely the two average sublattice magnetisations. These evolve 
according to non-linear Langevin equations where the noise terms are vanishingly small 
in the thermodynamic limit. An interesting feature of the present model is that the two 
time-dependent variables can be chosen ad hoc, according to the actual property to be 
investigated. Thus the representation of the degree of freedom as the ‘modulus’ and 
‘phase’ of the two-component magnetisation vector, defined from the sublattice average 
magnetisations, is particularly useful in order to point out the mechanism underlying 
the transition from ferromagnetic to antiferromagnetic order in the presence of a mag- 
netic field. During the decay the phase relaxation is decoupled from that of the modulus 
and finite size fluctuations are relevant only on the phase. Moreover we individuate an 
adiabatic regime, where the ‘modulus’ of the magnetisation vector attains its steady state 
value very quickly before the orientation relaxation starts towards the final anti- 
ferromagnetic configuration. This orientation relaxation process is easily shown to be 
an example of a decay process from an initial unstable state (Suzuki 1980, de Pasquale 
and Tombesi 1979, de Pasquale et a1 1982). A simple analytic theory for characterising 
the relaxation properties is then applied in terms of total and staggered magnetisation. 
For these quantities and for their probability distributions the analytic results are com- 
pared with those from numerical solutions. We also consider time averages over finite 
time intervals, obtaining results that show the qualitative behaviour expected for the 
decay of an unstable state (de Pasquale et a1 1982). 

2. Themodel 

Our system consists of 2N spins distributed on two sublattices labelled A and B, each 
one with N sites. We introduce coupling parameters for intralattice and interlattice spin- 
spin interactions denoted by JF and JAF, respectively. Denoting by yl(t)  and ql(t) the 
spin variables for the sublattice A and B respectively, the non-linear Langevin equations 
can be written as follows: 

dq, , ( t )  = [ J F m A - J A F m B  + ( ~ ~ - ~ A ) ~ ; , ( t ) ] d t + V % d ~ , ( t ) + h ( t ) d t  ( l a )  
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dv , ( r )  = [JAFmA-JFmB + ( Y ~ ~ - U A ) ~ , ( t ) ] d t + f i d ~ ~ ( r ) + h ( r ) d t  (1b) 
where h(t) is a homogeneous external field existing only for times t < 0. The first two 
linear terms in (1) take into account the interactions among sites i ( i  = 1, N )  in the 
molecular field approximation whereas the third and fourth terms are the stochastic 
increments due to the thermal bath. The terms w,  , w :  are independent Wiener processes 
for which the usual properties hold: 

(dw , ( t )  dw,(t’)) = 6,,6(t-t’) d t  

(dw,(t) dw;(t’)) = 0 
In (1) the lattice average of the squared field A is given by 

(do:(t)do,’(t’))  = 6,6( t - t ’ )d t  

(do,( t ) )  = (dw:(t)) = 0. 

Finally, the magnetisation on either sublattice is defined as 

The weak constraint (spherical limit) is satisfied in the limit in which the evolution of the 
magnetisation field occurs on a hypersphere in the phase space where A is constant. In 
thislimit, asshown below, we obtain astatistically equivalent descriptionofthesublattice 
magnetisations in terms of only two non-linear Langevin equations. 

From equations (1) and (2), according to the Ito prescriptions (Gardiner 1983) and 
taking (3) into account, we obtain the generalised Langevin equations for the lattice 
average quantities: 

A = JFmi + JFmi - 2 JAFmAmB f 2(ro - UA)A 

fi 
k~ = JFmA - JAFmB f ( Y o  - UA)mA + 7 2 E , ( t )  + h(t) ( 5 a )  

(5b) 

t 

fi 
k~ = -JAFI?ZA + JFmB + ( Y o  - UA)mB + ,YE E :  ( t )  + h(t) 

I 

wherethethermalnoiseterms g,(t) = hl(t) and E:(t)  = h:(f) appear as formalderivatives 
of the N-dimensional Wiener processes w , ,  0: and have the usual statistical properties: 

( E , ( t ) )  = 0 

( E :  ( 9 )  = 0 

(Et(9E,(W = 6 , W  - t’> 

( E : ( t ) E ; ( t ‘ > )  = b t , W  - t’>. 
(5c)  

It is worth noting that the noise strengths in (4) and ( 5 )  are vanishingly small in the large 
N limit. 

The actual reduction of the degrees of freedom is achieved by performing the 
sphericallimit (Sherrington 1981), i.e., ro ,  U -  x ,  ro/u = 1. WritingA = 1 + A/roin (4) 
we obtain 

A = ( J ~ / 2 ) m i  + ( J ~ / 2 ) m i  -JAFmAmB + & +  q\/E/N E ( t )  + h(t)(mA + m ~ ) / 2  ( 6 ~ )  
k~ = JFmA - JAFmB - Am, + &/N E A ( t )  (6b) 
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where 

We notice that, due to the spherical limit, the noise term E,  with unitary variance, is a 
Gaussian white noise with the following statistical properties 

(z(t)) = 0 (E(l)E(t')) = A(t)d(t  - t ' ) .  (7) 

( E ( t ) E A . B  ( t ' ) )  = m A , B  d ( t  - t ' ) .  

It is, however, correlated to the sublattice magnetisations by 

The above average must be understood as done over an ensemble of noise realisations 
with fixed m A , B .  Substituting (6a) into (6b,  c )  gives the required time evolution for the 
magnetisation of each sublattice 

~ A = ( J F  - E > ~ A  - J A F ~ B  - ( m ~ / 2 ) ( y ( m ~ ,  m ~ ) + f i / N ~ ( t ) ) + f i / N E A ( t ) + h ( r )  
@a) 

(8b)  

& B  = ( J F  - &)mB - J A F m A  - ( m ~ / 2 ) ( y ( m ~ ,  mB) + f i / N  s(t)) + &/N E B ( f )  + h(t) 

where 

y ( m ~ ,  m ~ )  = JFma f J F ~ ;  - 2 JAFmAmB + h(f)(l"lA + m ~ ) .  
With equation (8) we have reduced the original 2N Langevin field equations ( 1 )  

to two coupled stochastic equations for the sublattice average magnetisations, which 
describe the macroscopic properties of interest completely. This is one of the most 
relevant features of our model. Finite size effects have been taken into account exactly; 
they appear in the two noise sources. The next step is to study under which conditions 
fluctuations induced by these terms are amplified to a macroscopic size. To do that we 
discuss the unstable behaviour of the system in terms of the new quantity M ( t )  as 

M ( t )  = R(t) ele(') = m(t) + im,(t) (9; 
where we have introduced the total and staggered magnetisation m and m,, respectively 
given by 

m(t) = (mA(f) + mg(t))/2 = R(t) COS(8(t)) 

ms(t)  = (m,(t) - mB(t))/2 = R(t)  sin(8(t)). 

( loa)  

( lob )  

Equating real and imaginary parts of h o n e  arrives, after straightforward manipulations, 
at the time evolution equations for the 'phase' 8(t) and the 'modulus' R(t )  of M ( t )  

6 = J A F  sin 20 - (h/R) sin 8 + ( f i / 2 A 9  ge/R 

R = R(K* - E -;E &IN) - K ~ R ~  - hR2 COS 8 + ER f i / 2 N  
(11a) 

(11b) 
with 
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K O  = J F  - JAF COS 20 

and where gR, are independent Gaussian noise terms with the same statistical properties 
as 6 A . B .  

3. Steady state properties 

In order to investigate the dynamic evolution of our system between the initial and final 
state we need to know its static properties. These are better studied in terms of the total 
and staggered magnetisations just defined. From (10) and from the deterministic limit 
of (8) we have 

rA = J , m  - (J lm2 + Jzm: + hm + E)m+ h 

ms = J2ms - ( J lm2  + J2m; + hm + E)m, 
(12a) 
(12b) 

with 

J1 = J F  - JAF J2  = J F  + JAF. 

We first look for the stable long range antiferromagnetic solution, i.e., m, # 0. This 
is straightforwardly given by: 

m, = k v l  - E / J 2  - h2/4JiF (13) 

m = ~ / ~ J A F .  (14) 
From these solutions one sees the existence of a critical temperature E, = J 2  determining 
the passage from paramagnetic to ordered phase. Here and in what follows we shall 
restrict to the phase where E < E ~ ,  moreover we shall assume that JF > JAF. It will be 
clear in the next section that with these conditions the evolution of the system may be 
analysed in terms of only one relevant variable. Below the critical temperature the long 
range order depends on the applied field. From (13) we see that there exists a critical 
field h,, whose magnitude determines whether the ordered phase will be ferromagnetic 
(h > h,) or antiferromagnetic (h < h,). The value of the critical field is given by 

h,(E) ? ~ J A F  v-. 
Therefore for h > h, the stable state is the one with m # 0 and m, = 0, i.e., with the 

average magnetisation oriented parallel to h on both sublattices. This will be the initial 
state of our system whose magnetisation may be obtained from the solution of the 
following cubic equation: 

J l m  - Jlm3 + (J1 - E)m + h = 0. 

The behaviours of m, and m as a function of h are shown in figure l (a) .  
It is now interesting to study the steady properties of the variables 0 and R since it 

will appear that, under certain conditions, the dynamics of the system is ruled by the 
evolution of 0 only. By inverting equation (10) the equilibrium values of R and 0 for 
h < h, are given by 

R = d m  0 = tan-' V m  (15) 

R dl - E/h o = o  (16)  
and for h > h, by 

( R  is evaluated here in the limit h 9 h,). The behaviours of R and 0 as a function of h 
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are shown in figure l (b ,  c).  It must be noted that the variable R does not undergo any 
transition at the critical field if E = 0. For finite but small temperatures the difference 
between R(h = 0) and R(h P h,) is of order E .  

Due to this behaviour of R ,  the term 8 turns out to be the variable describing the 
instability of the system at the critical field. In fact one can write a potential function 
V ( 8 )  = -d8/dt,  assuming R is constant: 

v(8) = (JAF/2) COS 28  - (h/R)  COS 8. (17) 

From equation (17) the instability of the state with 8 = 0 appears as soon as h < 25AF. 
In the approximations used so far, 8 comes out to be the variable suitable to describe 
the kinetic instability of the system after the external field is switched off and we will use 
it in the next section. 

L- 

: 
2 7  

1: 

, , I r i ,  1 0-,, - ~~ 

Figure 1. Static phase diagram of (a )  the total 

variable R ,  and (c) the variable 0 as a function of 
the applied field h The system is assumed to be 

- and staggered magnetisations m and m,, ( b )  the 

4. Ordering kinetics 

We now turn to the dynamics of the system, starting from the stable state in which h P h, 
and evolving towards a new equilibrium state when the field is instantaneously switched 
off at t = 0. We assume the temperature to be kept constant and below the critical 
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temperature throughout the whole process. We shall first discuss the non-linear relax- 
ation properties in the deterministic limit and then consider the role of thermal fluc- 
tuations. Fort  > 0 and for h = 0 we obtain from ( l l a )  that the 8 relaxation is decoupled 
from the R relaxation. The decay of 8(t) is given by 

8(t) = tan-'[tan(8(0)) exp(t/te)] (18)  

where 

is the time constant for the 8 relaxation. A simple analytic solution of (116) for R(t) is 
possible in the adiabatic limit, i.e. when the relaxation processes for R(t) and 8(t) occur 
on a very different time scale. This depends, in general, on the relative magnitudes of 
the time constants to and tR for R(t). To find tR we solve (116) for fixed 8 and obtain 

R(t) = R(0) (1 + [ K @ / ( K @  - E ) ]  R2(0)(1 - exp( - 2 t / ~ ~ ) ) } - l / ~  (20) 

where the time constant for the R(t) relaxation is 

By comparing t g  with tR one sees that the adiabatic regime is realised only when the 
interlattice coupling constant, JAF, is small with respect to the intralattice one, JF. For 
the steady state value of (21 ) ,  R* is only slightly affected by the 8 motion in the low- 
temperature limit 

R * ( 8 )  = v/(1-. 
From equations (18) and (20) one sees that when re BtR,  the R relaxation takesplace 

first and depends, through K ~ ,  on O(0). We note that the adiabatic condition corresponds 
to a long 8 lifetime that can be affected by fluctuations once the R relaxation has 
occurred. 

We now want to consider the effect of the thermal noise terms on the ordering 
kinetics. As we will show, these terms will affect the variable, 8, relaxing from an 
extremumof the potential V ( 8 ) ,  whereas they are practically ineffective on R(t). Accord- 
ing to the initial conditions of the system just described, we can write that 8(0) = 0, and 
R(0) is given by equation (16a) .  

From the complete relaxation of R(t),  equation (116) with h = 0 at t > 0, one 
sees that the noise terms initially do not affect the behaviour of R(t) since its initial 
deterministic drift is large compared to the fluctuations. Moreover, according to the 
deterministic evolution, R remains always much larger than the noise-induced fluc- 
tuations. Therefore the noise terms can be neglected in considering the time evolution 
of R ,  which is equivalent to taking for R the thermodynamic limit directly in the dynamic 
equations ( l l a ,  b). From (22) one sees that for t  > tR, R reaches the value R*(B = 0). 

The next relaxation of 8 does not affect appreciably the evolution of R(t) ,  since in 
the adiabatic regime these two values of R are almost equal. We can therefore con- 
centrate our attention on ( l l a )  considering R(t) = Req, with Re, given in equation (15) .  
It is possible to solve these stochastic equations in the quasi-deterministic theory (QDT) 
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(Suzuki 1980). We may estimate the process 8(t) using the solution (18) of the deter- 
ministic version of ( l la)  with an initial datum B o  that is a random variable given by 

with average 

and variance 

a2(t)  = (8,(t)*) - (80 ( t ) )2  = a2(1 - exp( -4J,,t)) (24b) 

where 

We can estimate the time the system spends close to the unstable ferromagnetic state 
when 8 = 0 by considering the time zo in which O Z ( t )  attains a value appreciably different 
from zero: 

We obtain 

to = (1/4JAF) ln( l /a2) .  (26) 

After a time comparable with zo any realisation of the system follows a deterministic 
decay driven completely by the evolution of 8 in the adiabatic limit. Equations (24-26) 
show that the finite size N of the system is essential for the 8 decay from the unstable 
state within a finite time. The above results allow us to obtain the time behaviour of the 
total and staggered magnetisation, and its higher moments, as well as to evaluate the 
whole probability distribution function (PDF) of m:. The interesting quantities are 

(mz(t)) = RZ(t)(Cos2e(t)) (27a) 

(m:(t)) = R2(t)(sin2e(t)) (27b) 

and the generic even moment (the odd ones being identically zero for symmetry reasons 
due to the absence of external field): 

(mak (t)) = RZk(t)(sinZk e(t)). (28) 

In the above equations R(t) is considered a deterministic quantity. Moreover 
RZk( t )  + Rzi in a time t zO. From these facts we have that, in the dynamical context, 
the presence of unstable states that we have found dealing with the steady state properties 
of the system, is related to long persistences around such states. A vanishingly small 
thermal noise is able to drive the system into the final stable state. Nevertheless anom- 
alous fluctuation will appear during the transient behaviour. 
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Analytic expressions for the average quantities in equations (27), (28) are obtained 
by considering the following identities 

sin2k 8 = [tan28/(tan28 + 

tan20(t) = ( exp( -2~ , , )8~( t ) )~  = w2/z2(t) 

z ( t )  = (l/u(t)) exp( -2JAFt). 

(29) 

(30) 

(31) 

where tan2 8 is given by 

in terms of the variable 

In (30) we put eo = u(t)w, with o a Gaussian variable having zero average and 
unitary variance. Hence the thermal average reduces in QDT to an average over w :  

W 2  
dw ( 1'. 

w2 + Z y t )  

The integral in (32) can be given an analytic expression in terms of the parabolic 
cylinder function D - 2 k ( ~ )  (Abramowitz and Stegun 1965): 

(sin"ke(t)) = [(2k - 1)!!/2] e x p ( ~ ~ / 4 D - ~ ~ [ z ( t ) ] .  

The term D-2k can be evaluated in an approximate way to find the average staggered 
magnetisation. In figure 2(a, b)  we show the results obtained by computer simulations 
and compared with the analytic solutions obtained in the QDT, equations (27), (28). It is 
interesting to investigate the behaviour of the fluctuations of mi. To do this we introduce 
the following time-dependent variance 

(Am:) = (") - ( m m 2 .  (33) 
In figure 2(c) we observe an anomalous behaviour of the fluctuations in the transient 

(f = 25) when the staggered magnetisation begins to grow. The fluctuations in this time 
range do not decrease as the size of the system increases but become size independent. 
To correctly interpret the simulation results one has to bear in mind the following point, 
The finite values used for y o  = U = 10 instead of their spherical limit (see equations (6)) 
bring about a systematic shift of the equilibrium values of all the non-vanishing calculated 
quantities. To take this fact into account in the comparison between simulations and 
theory, we have used for the equilibrium value Re, the following expression instead of 
that in equation (15) 

R& = + JAF + JF)/U - E/(JF + I A F ) .  

This follows from the deterministic value of (4) with h = 0, ( 5 )  and from the definition 
(10). The dynamic behaviour is, however, not affected by the value of ro, U .  

5.  The ordering statistics 

In a recent work (Mazenko et a1 1988) it has been proposed to characterise a system 
exhibiting spontaneous growth of order with an order parameter field which splits into 
an ordering component plus a fluctuating field. The ordering component is affected by 
fluctuations in the relaxation regime and achieves a deterministic value asymptotically. 
In our case a natural choice for the definition of the ordering component is the QDT 
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Figure 2. Comparison between the results of the 
QDT and computer simulation for the total and 
staggered average magnetisations m(t) and ms(t), 
plotted in (a) and (b ) ,  respectively. In (c) the 
anomalous fluctuations (equation (33)) associ- 
ated with the growth of m, in the transient are 
shown. The quantities arising from simulations 
are obtained from the following definitions: 

0 20 LO 60 80 100 
t 

0 20 LO 60 80 100 
t 

The values of the parameters used in (a ) ,  ( b )  and 
(c) are 

~ = 0 . 0 1  ro = 10 U =  10 

N =  100 JF = 1 J A F  ~ 0 . 1 .  

Here one can see that at the very instant the 
external field is switched off there is a very fast 
relaxation of the magnetisation. 

process. Further, we introduce the time average of the process over finite times. This 
kind of time average will become, asymptotically, a deterministic quantity. If this 
asymptoticvalue does not vanish on a macroscopic time scale (of the order of magnitude 
of the size of the system), a spontaneous growth of order will occur. From a theoretical 
point of view, time-averaged quantities are well approximated by the QDT limit. We 
shall consider in the following the time average of the squared staggered magnetisation. 
A very detailed description of the ordering kinetics is given by the study of the probability 
distribution functions (PDFS) P(m:) and P ( m f )  associated, respectively, to the square of 
the staggered magnetisation and its time average m f ( t )  defined by 
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(34) 

In (34) the small fluctuations in the final regime, neglected in the QDT, are obscured by 
the average process while the transient fluctuations are still present. The PDF can be 
obtained numerically by sampling m:(t) or x(t) at different times for different thermal 
realisations of the process, as shown schematically in figure 3 for P ( z ) .  Its analytic 
form can instead be deduced by considering the explicit expression of x(t) obtained 
from (34) and from the definition (lob) by means of equations (27)-(32): 

where y is a zero-average Gaussian variable with variance o given by (24c). After a 
straightforward integration one gets 

?(t) = R:qi[l + {h[( l  - y ’ )  exp( -4JAFt) + y2]}/4JA,t(l - y 2 ) ] .  (36) 
The generating function of the above variable is 
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In principle one can obtain all the moments (z)k from this generating function. 
However, in order to have a quantity that can be directly compared to numerical 
simulations we concentrate our attention on the probability P ( x ) .  Defining P($) as 
the probability that $(t)  has a given value $ one can write 

In (37) the inverse Jacobian of the transformation is 

-- 

(38) 

h [y2  + (1 -y2)  exp( -4JAFt)] 1 - exp( - 4JAFt) + 
R2,qy i (1 - Y 2 >  (1 - y2) exp( - 4JAFt) + y* 

- 
d z  

dy 2JAFt(1 - Y 2 >  

and y must be understood as a function of $ obtained by inversion of equation (36). 
The probability (37) is singular for y = 0 but the moments of $(t)  converge since for 
y +  0: 

exp(4JAFt) - 1 
= RZq ( 

4JAFt 

Hence one can evaluate P ( 2 )  at any fixed time. The analytic results are compared to 
the histograms obtained by simulations in figure 3. The PDF P(m:) can be obtained in an 
analogous way. 

In analogy with the previous case, and making use of equation (23), m, can be 
obtained from the relation 

U* = - z*(t)m?/(m: - R&). (39) 
With the same procedure used for (38) one arrives at 

P(m:) = ( 1 / 6 ) ( d o / d m f )  exp[ -z2(t>m2/2(Rtq -mi ) ]  

where 

dw/dm: = [R&/2V'~*(t)m:/(Rt~ - mf)] [~( t ) / (R:~  - m:)]' 

and whose variance is just equation (33) for the anomalous fluctuations of ml 

6. Conclusions 

In the present paper we have presented a simple model for the relaxation of an anti- 
ferromagnetic spin system initially forced to be in a ferromagnetic state by means of 
an external field. Choosing the simplest spin arrangement of two interpenetrating 
sublattices and introducing the spherical model we were able to state the non-linear 
dynamical process in terms of coupled Langevin equations. We have investigated the 
problem essentially in two steps. In the first one we have reduced the 2N spin degrees 
of freedom to only two macroscopic degrees of freedom with the same statistical proper- 
ties as the original set. Moreover, we have individuated the conditions for an adiabatic 
decay of one variable with respect to the other. In the second step the dynamical 
behaviour has been obtained by decoupling the two Langevin equations in the adiabatic 
limit of weak antiferromagnetic interaction after rewriting them in terms of the modulus 
and phase of a vector whose components are the two macroscopic degrees of freedom 
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Figure 4. Probability distribution function of the time-averaged staggered magnetisation. 
The histograms are obtained by computer simulation (see figure 3) from a sample of 1200 
processes averaged at the time. t ,  shown on each of plots (u)-(d). The continuous curve is 
the analytic  re result, equation (37). At intermediate times. e.g. figure 3(b ) ,  the bimodal 
behaviour of the distribution is to be noted. 

of the system, e.g. the total and staggered magnetisations. In this case the relaxation of 
these quantities occurs on a very different time scale. The modulus decays rapidly into 
a phase-independent equilibrium value, while the phase shows all the typical features 
of decay from an unstable state, already known in other descriptions (Suzuki 1980, 
de Pasquale and Tombesi 1979, de Pasquale et a1 1982). As expected, due to the behav- 
iour of the phase, the initial staggered magnetisation fluctuations are strongly enhanced 
to values larger than the steady state ones in the transient. This is a general feature of 
the decay from an unstable state (de Pasquale et a1 1982). The problem shows close 
analogies with that of the growth of the q = 0 mode in a finite ferromagnetic system 
(Ciuchi er a1 1988) where the magnetisation growth occurs because of the amplifications 
of initially small fluctuations due to the finite size effect. In fact the fluctuations were 
found to be of the order of 1/N, as was the case in our study. Finally, we have compared 
theoretical and simulated probability distribution functions for the squared staggered 
magnetisation and for its time average, which is a more appropriate quantity to show 
the presence of anomalous fluctuations in the transient. (See for example figure 4 where 
five different realisations of the time-averaged staggered magnetisation process are 
shown.) The latter (time-averaged) quantity is also proposed as a possible measure of 
the spontaneous growth of order. The probability distribution shows a double peak 
structure at intermediate times and then shrinks around the steady state value (see figure 
3). This bimodal shape is again a feature of the decay from an unstable state (Baras et a1 
1983). A very good agreement between theoretical results and numerical simulations 
(see figures 3 ,4)  is found. 
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